Sendai virus transgene in a novel gene therapy for laryngotracheal disease.
نویسندگان
چکیده
OBJECTIVES/HYPOTHESIS Vocal cord scar formation and laryngotracheal stenosis (LTS) are challenging problems for otolaryngologists. Sendai virus (SeV) vectors have been shown to transduce airway epithelium efficiently, and are thus ideal for modulating airway wound-healing therapy. To assess the potential utility of SeV gene therapy for laryngotracheal diseases, we established a novel LTS model and examined the transduction efficiency of SeV vectors in normal and LTS model tissue. STUDY DESIGN Basic science. METHODS Fusion (F) gene-deleted, nontransmissible SeV vectors were used. First, the route dependency and transduction efficiency of SeV vectors for normal mucosa in the larynx were examined. Next, the novel LTS rat model was established and evaluated. Finally, the transduction efficiency of SeV vectors in injured mucosa of the LTS model was evaluated. RESULTS Simple spray delivery of the SeV vector resulted in significant and persistent expression of the reporter gene in normal laryngotracheal epithelium. Transgenic SeV-mediated expression was maximal at 3 days, decreased over time, but remained detectable for 14 days after administration. No serious side effects were observed in the larynx or trachea. The model achieved an average of 60% tracheal stenosis in the cross-sectional area. Efficient SeV-mediated transgene expression was observed in the injured mucosa at the levels of the trachea, cricoid cartilage, and vocal cord. CONCLUSION A novel animal model for LTS was established. We successfully demonstrated SeV-mediated transgene expression in normal tissue and in the injured mucosa of the LTS model. SeV might be a promising strategy for gene therapy in laryngotracheal diseases.
منابع مشابه
Novel Strategy to Control Transgene Expression Mediated by a Sendai Virus-Based Vector Using a Nonstructural C Protein and Endogenous MicroRNAs
Tissue-specific control of gene expression is an invaluable tool for studying various biological processes and medical applications. Efficient regulatory systems have been utilized to control transgene expression in various types of DNA viral or integrating viral vectors. However, existing regulatory systems are difficult to transfer into negative-strand RNA virus vector platforms because of si...
متن کاملP-111: An Attempt to Facilitate the Production of Transgenic Mouse As A Model for Gene Therapy of Gaucher Disease
Background: Gaucher disease is an autosomal recessive inherited lysosomal storage disorder that affects many of the body's organs and tissues by defective function of the catabolic enzyme β-glucocerebrosidase. Gene therapy is one of the efficient ways for treatment of this disease. Due to the lack of appropriate animal models, in the field of gene therapy little progress has been done.Mate...
متن کاملEfficient generation human induced pluripotent stem cells from human somatic cells with Sendai-virus.
A few years ago, the establishment of human induced pluripotent stem cells (iPSCs) ushered in a new era in biomedicine. Potential uses of human iPSCs include modeling pathogenesis of human genetic diseases, autologous cell therapy after gene correction, and personalized drug screening by providing a source of patient-specific and symptom relevant cells. However, there are several hurdles to ove...
متن کاملFusigenic viral liposome for gene therapy in cardiovascular diseases.
To improve the efficiency of liposome-mediated DNA transfer as a tool for gene therapy, we have developed a fusigenic liposome vector based on principles of viral cell fusion. The fusion proteins of hemagglutinating virus of Japan (HVJ; also Sendai virus) are complexed with liposomes that encapsulate oligodeoxynucleotide or plasmid DNA. Subsequent fusion of HVJ-liposomes with plasma membranes i...
متن کاملToward gene therapy for cystic fibrosis using a lentivirus pseudotyped with Sendai virus envelopes.
Gene therapy for cystic fibrosis (CF) is making encouraging progress into clinical trials. However, further improvements in transduction efficiency are desired. To develop a novel gene transfer vector that is improved and truly effective for CF gene therapy, a simian immunodeficiency virus (SIV) was pseudotyped with envelope proteins from Sendai virus (SeV), which is known to efficiently transd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Laryngoscope
دوره 123 7 شماره
صفحات -
تاریخ انتشار 2013